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ABSTRACF

An encryption scheme based on chaotic dynamics is presented. This scheme
• makes use of the efficient and reproducible generation of cryptographically secure

pseudo random numbers from chaotic maps. The result is a system which encrypts
quickly and possesses a large keyspace, even in small precision implementations. This
system offers an excellent solution to several problems including the dissemination
of key material, over the air rekeying, and other situations requiring the secure
management of information.



1. INTRODUCTION

In this paper, we investigate the potential for employing chaotic dynamics as
' a reliable, secure, and rapid encryption tool in symmetric cryptography. The basic

idea of cryptography is to alter a message in such a way as to make it unintelligible
to anyone except the intended recipient, t'2 The original message, M, also referred to
as the plaintext, is represented by a finite string of symbols from a given alphabet, Sin.
The encryption procedure codes the message using a transformation, E, that depends
on a set of parameters, K, called the key. The result is an encrypted ciphertext

C = E(M;K)

which is meaningless to an unintended observer. In a symmetric cryptosystem, the
recipient of the ciphertext retrieves the original message by using the same key as the
sender and employing a decryption transformation, D:

D(E(M;K);K) = M.
i

Both the sender and recipient of the message must share the same key for the
message to be successfully interpreted.

In the past, cryptography was used primarily within the military, intelligence,
. and diplomatic communities. With the increased speed and facility of data transfer

allowed by modern computer systems, cryptographic applications have also appeared
in banking, personnel administration, computer networking, and counter-narcotics
activities.

The emergence of new cryptographic concerns in non-traditional areas of
interest has led to the development of several iterated cryptosystems. An iterated
cryptosystem relies upon the repeated application of weak functions to produce
cryptographically strong results. The most popular of these, the Data Encryption
Standard (DES), was adopted by the National Bureau of Standards in 1977.3 The
DES, along with a large number of cryptosystems inspired by it, survived attempts at
attack for several years. However, in recent years effective attacks on these systems
have appeared, based on the method of differential cryptanalysis. This method has
exposed design flaws not only in DES, but in many other iterated cryptosystems,
showing that the time required to defeat some of these schemes can in many cases be
reduced to a matter of minutes or even seconds on personal computer¢. Although
DES itself appears relatively secure at this time, the fact that it has revealed
exploitable weaknesses increases the need for alternative cryptosystems.



A drawback of iterated cryptosystems is the extreme difficulty associated with
proving their security. One way to avoid this problem is to develop a cryptosystem
working from an a priori strong foundation. An example of such a system is the one-
time pad cryptosystem. The one-time pad is the only cryptosystem which can be
proven to be secure. However, in light of the severe requirements it demands in order .
to guarantee security, the one-time pad is not practical for general use.

The one time pad requires, for any plaintext message M composed of i bits,
a unique and random string K, also consisting of i bits, with a uniform distribution.
The space of all possible strings K is the keyspace. Encryption of the plaintext is
achieved through simple combination of these two strings by some bitwise
mechanism, in this case we will define the ciphertext C to be the exclusive-or (XOR)
product of M and K. The distribution of the random string K is uniform and
independent of the distribution of M, which implies that the distribution of C is
uniform and independent of the distribution of M as well. Since the string K is
random, any attempt to decrypt the ciphertext, without knowledge of the string K,
possesses only a minimal chance of success.

As mentioned above, the proper use of the one time pad entails requirements
which greatly limit its practicality. The first requirement is obvious; the one time pad
requires the secure distribution of as much key material as plaintext. Second, a new
random string must be used for each encryption, as attacks employing multiple
ciphertexts encrypted under the same key are trivial: The impracticalities associated
with these two requirements are referred to as the key management problem. Making
use of the one time pad as an effective foundation for a new cryptosystem requires
the elimination of the key management problem. In order to do this the amount of
information needed to drive the cryptosystem must be significantly decreased without
diminishing the scheme's security.

In the work reported here, we present a variation of the one time pad that
yields a practical solution to the key management problem. The pseudo random
behavior of chaotic dynamics is used to produce pseudo random sequences from a
small amount of initial information. These pseudo random numbers are then
combined with the plaintext message to generate the cipher text. This concept is
supported by two properties of chaotic dynamics: _ (i) its highly irregular character
successfully mimics truly stochastic behavior and (ii) its deterministic nature ensures
simple, rapid, and accurate reproducibility. A general discussion of cryptographically
suitable methods of pseudo random number generation is presented in Section 2. The
application of chaotic dynamics to a practical solution of the key management
problem is discussed in Section 3. The actual implementation of chaotic dynamics in
an encryption scheme is examined in Section 4, and preliminary conclusions derived
from this work are summarized in Section 5.



2. PSEUDO RANDOM NUMBER GENERATION

t.

The development of a secure cryptosystem invariably requires effective and
• secure random number generation. Some of the more popular random number

generators in use today are based on the linear congruential method, the middle
square method, multiplicative methods, and mixed methods. 7_ These are enhanced
by additional techniques such as data perturbation, swapping random sample queries,
cell suppression, partitioning, and complex bitwise manipulation. These methods have
met with varying degrees of success in different applications, but they do not provide
a definitive answer to the random number generation problem. _1°

An ideal generator would produce a truly random sequence. However, this is
impossible since both the generation and the analysis of a truly random sequence
would require infinite information content. 11 An actual generator can, therefore,
produce only a pseudo random sequence for which various measures of randomness
can be defined. 7,_'_ For practical use in a given application, we require that a pseudo
random number (PRN) generator possess: (i) reproducibility, (ii) computational
efficiency, and (iii) adherence to standards related to that specific application.

For instance, consider the computational efficiency of a PRN generator. The
generator must be both rapid in the production of a pseudo random sequence and
economical in its storage. In some cases, there is a direct trade-off between the two
qualities. A routine designed to generate numbers to be used to dynamically encrypt
real time transfer of data is more concerned with the speed at which it can generate
a pseudo random sequence. A routine intended to generate PRNs to be used in the
encryption of electronic documents which are then stored must incorporate efficient
storage considerations. The configuration which possesses the maximum utility for a
particular application must therefore be determined based on the requirements of
that application.

When employed within cryptographic applications, the PRN generator comes
under the scrutiny of a well informed enemy, equipped with modern computational
resources. The enemy's goal is to reproduce a particular sequence of pseudo random
values. The enemy does not possess the unique initial information (i.e. initial values,
seeds, and other variable parameters) associated with the sequence he wishes to
regenerate. For the generator to be useful cryptographically, any attempt by the
enemy to reproduce subsequent portions of a pseudo random sequence given a finite
portion of that sequence (referred to as an attack) must have a trivial chance of
success in any useful amount of time.



To insure security against the enemy, we avoid a purely statistical notion of
randomness _7,8and instead adopt a more cryptographically practical definition. Any
statistical benefits incurred from a particular PRN generator which are not directly
associated with its adherence to oor cryptographic definition of random are cosmetic,
and add little to the generator's usefulness. A cryptographically strong pseudo random
number generator (CSPRNG) must produce sequences of values which: (i) possess
minimal internal correlation, (ii) convey minimal critical information regarding their
origin, and (iii) are absolutely dependent upon unique and sensitive initial conditions
for proper reproduction.

In order to be useful cryptographically, a PRN generator must produce
sequences with minimal internal correlation. By this, we mean a sequence of PRNs
must possess an acceptably small correlation between subsequent velues and close
neighbors. Furthermore, any long range correlations (periodicity) are equally
undesirable. The existence of such correlations can offer information regarding the
nature of the CSPRNG used to prgduee the sequence. The availability of such
information is contrary to the purpose of the generator and must be avoided.

The critical information content of the sequences generated by a CSPRNG
must be carefully monitored. Critical information content is the quality of a sequence
that associates it with the composition of a particular PRN generator and the specific
parameters it employs. Output which completely retains critical information may be
easily attributed to a particular PRN generator. Similarly, an output which retains
minimal critical information can not practically be associated with any one particular
method of PRN generation. For example, any member of an unaltered sequence of
iterates resulting from some recursive process retains all the critical information
necessary to recreate that sequence in either dir_.ction. In this sense, the critical
information content of a sequence is directly related to the degree of internal
correlation between its members. One method of visualizing the critical information
content of a sequence is through the use of Poincar6 plots, which display a member
of a sequence, xn.i ,versus another member, xn. Depending upon the underlying
dynamics of the PRN generator and the value of the lag i, such a plot eventually
reveals a structure which is directly dependent upon the critical information content
of the sequence.

A CSPRNG must require unique initial conditions for the generation of a
pseudo random sequence, and be sensitive to any changes in those conditions. Ideally,
each initial condition should eventually yield a unique pseudo random sequence, and
no correlation should exist between two initial values and the similarity of the output
they generate. In a realistic application, however, we do not exclude the possibility
of multiple initial conditions resulting in the same output. This is acceptable as long
as the number of such initial conditions is relatively small.



Based on these three requirements, using nonlinear maps in a chaotic regime
to implement CSPRNGs appears promising. The reproducibility of sequences

• generated by these maps ,s guaranteed by their deterministic character. The
computational efficiency of the generator is a result of their recursive nature. A

, computer-based application performs few operations per iteration, making the
generation of long strings of iterates simple and quick. The sensitivity of chaotic maps
to minute changes in initial condition insures that the generator will also be sensitive
to such changes. Furthermore, statistical tests show that the output of chaotic maps
can be efficiently transformed so as to relate minimal critical information and possess
practically uo internal correlation.



3. APPLICATION TO qT-tEKEY MANAGEMENT PROBLEM
b

We present the following application of a chaotic dynamics-based CSPRNG
to the key management problem.

0

The PRN generator performs all operations in b bit floating point precision.
The first stage of the generator employs m nonlinear chaotic maps, CI, Ca ... Cm,
operating on the unit segment. These maps require m initial values (seeds), each a
b bit floating point value designated/(1, K:, ... K,. Each map iterates its respective
seed I times, producing the iterates G_J(K_), C2PJ(Kz),..., Cmrti(K_. These iterates are
combined via the exclusive-or operation, referred to as XOR and denoted by ®, to
give a value R_:

R, = C,aI(K,)® ... ®C.t'J(K_) .

This number is then transformed into a pseudo random integer, p_ = I(R_), by
extracting one byte (8 bits) from a specific address in the binary representation of R_
and expressing it as an integer. The value pj is the first member of the pseudo
random sequence of integers p_, p_ ..., p.. Additional values are generated by the
same process using the n 'h set of chaotic iterates C/"J(K,), i=l,...,m, as the new keys
for the (n+1) _ round.

The sequences produced by the PRN generator described above possess the
. properties outlined in the description of a CSPRNG. The sensitivity to unique initial

conditions is derived from the use and combination of multiple chaotic maps. The
sequences' internal correlation and critical information content are then minimized

" by the use of the XOR and integer generation procedures. By selecting the byte used
to generate the pseudo random integer near the end of the XOR product, minimal
differences in initial conditions are expected to precipitate quickly into significant
differences in the pseudo random sequence. The result is a quick and efficient
CSPRNG.

As proof of principle, and as a reference for further applications, the PRN
generator described above was implemented on an IBM compatible personal
computer. Full documentation on the hardware and software specifications used are
included in Section 4. All arithmetic is performed in 64 bit extended floating point
precision.

Two chaotic maps were used, namely the Bernoulli Shift:

" x,,+z= 2x,,mod 1
and the Logistic Map:

• x..,-



whose properties are well studied. 5.6 Both possess simple recursive structures which
make computer implementations quick and efficient. Iterates are XORed together,
and the binary byte consisting of bits 48 through 55 of the 64 bit XOR product is
extracted and converted into an integer. The initial information requirements consist
of one 64 bit floating point seed for each map, a 64 bit _.value for the Logistic Map, °
and an 8 bit integer value l describing the number of iterations between subsequent
values in the pseudo random sequence. This set of values is referred to as the key.

Using the CSPRNG presented above, a variation of the one time pad
cryptosystem is achieved as follows: A message M of length L is separated into its
component characters mi. These characters are represented as integer values based
on their position in the alphabet S,. For illustration, the standard ASCII character
set, which represents characters as 8 bit integer values, has been used. Using the
method presented in the previous section a pseudo random integer sequence P of
length L is generated, with eight bit integer components Pi. The ciphertext C is
expressed in terms of its components q, defined as:

Ci = mi ®Pl.

Decryption follows an entirely parallel scheme (See Fig. 1).

The Chaotic Dynamics XOR Cryptosystem (CDXC) enjoys a distinct
advantage over the standard one time pad method. Each use of the traditional one
time pad requires as much key material as plaintext, resulting in the key management
problem discussed in the previous section. However, our variation of the one time
pad requires a constant, relatively small amount of initial information for each
message to be encrypted, regardless of its length. The initial information requirements
of this particular application consist of three 64 bit values and one 8 bit value, or 200
bits of information. This translates to the secure distribution of 25 ASCII characters
per encryption, effectively eliminating the key management problem associated with
the traditional one time pad while retaining its security.



Encryption of a Plaintext Character.
This chart represents the encryption of a plaintextcharacterusingtheencryption

schemepresentedin sectionthree. Due to the propertiesof theXOR operation,decryption
is achievedbyan identicalmechanism.In decryptionthe inputconsistsofa ciphertext
element,cn,whilethe outputis a plaintextcharacterm..

Piaintext
Character

mn

Seed 1 _ lu.,i(= K,) I(K,) i .. L[nl](Z,K,)
- ® . Encryption I

S[.q(K2) = l (Rn)= pn " mn® pn= Cn Ii
Seed2 =- ___i " =" J(K2)

Seeds - Seeds 1 and 2 are b bit floating point values on the unit
P

segment.
Ciphertext

;L - _.represents the Lambda parameter of the Logistic Map, a Element
b bit floating point number that takes values in the range
of (3.99,4). Cn

L, S - L and S represent the Logistic and Shift maps, respectively.

® - This symbol indicates the XOR (exclusive-or) operation.

! - I is the random integer generation process described in seclion
three.

Figure 1



4. IMPLE_ATION

To demonstrate the utility of the CDXC, a COhlputer application was developed.
The computer hardware used in the development of the DOS version of this program

" consists of a Northgate Computer Systems, Inc. 386 personal computer running
Microsoft's MS-DOS 5.0. This machine makes use of the Intel 80386 - 25 MHz 32 bit
processor and the Intel 80387 numeric coprocessor. The 80387 numeric coprocessor
provides for the quick manipulation of floating point operations, and is capable of
supporting an 80 bit extended precision floating point mode. Standard IEEE rounding
modes are also supported, the default state of round to nearest was used in all
floating point calculations. The source code was developed using Borland Turbo
C+ + version 3.0.

The core of CDXC is the encryption algorithm presented in the previous section.
Additional routines were added to handle user input and file I/O. The program is a
command line encryptor; when invoking it a source file is specified on the command
line. This file serves as the input for encryption, the plaintext, and is overwritten by
encrypted output, the ciphertext. As described before, a pseudorandom 8 bit value
(one byte) is extracted from the XOR product of two chaotic iterates, and is XORed
with a plaintext byte. The XOR value of the pseudo random and plaintext bytes is
output as the ciphertext byte. Due to the properties of the XOR operation,
encryption and decryption are identical functions. To decrypt a file, CDXC is invoked
with the encrypted file specified as the source file. By supplying the proper initial

- conditions, the correct pseudo random sequence is generated and XORed with the
ciphertext, reproducing the original plaintext.

The DOS version of this program has been extensively tested with various types
of files, functioning equally well on both text and binary data. Furthermore, CDXC
runs very quickly. Even on a low end platform like the 80386 computer used here,
it outpaced several software implementations of the DES, with throughput on the
order of 16k/see (average). Note that this rate includes the delay caused by disk I/O,
which was optimized through the use of multiple buffers but still requires a significant
amount of time for large files.

A UNIX version of this program was developed, using vendor supplied compilers
to compile the code on different workstations. An HP 9000/730 workstation was used
as the primary development platform, with versions ported to IBM RISC/6000 580
and SGI Indigo (R3000) workstations. Ciphertexts were interchangeable between
these three machines. A message encrypted on one machine was correctly decrypted
on another, dispelling our initial fear that differences in architecture and consequently

" different methods of addressing floating point numbers on different workstations
would prevent encryption and decryption across platforms. The high _hroughputs for

II
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these workstations, displayed in the table below, makes this cryptosystem ideal for
applications involving high speed transfer of data over networks and phone lines.

Platform / Processor File Size DES Encryption CDXC Encryption •
(bytes) Time (seconds) Time (seconds)

i i I iii i

386- 25 MHz 519750 64.4 32.8
I

486- 33 MHz 519750 23.0 7.96
I I

IBM RISC/6000 580 519750 3.4 1.1

HP 9000/730 519750 4.4 1.9
ii

SGI Indigo (R3000) 519750 * 6.7

• - No Version Available

12



5. DISCUSSION

,B

The cryptosystem presented in Section 3 effectively removes the key management
• problem of the one time pad for a large number of practical applications, without

decreasing its security. The benefits derived from employing chaotic maps in
encryption are best evaluated when this cryptosystem is subjected to various methods
of attack used by an enemy. Consider, for example, two trivial methods of attack: (i)
Brute Force attacks and (ii) Key Guessing attacks. It is not difficult to demonstrate
their inefficiency as long as we observe certain rules which must be applied to our
scheme.

The term Brute Force Attack can describe any one of several types of attacks on
a cryptosystem, most of which resort to an exhaustive search of some set of
parameters intrinsic to that cryptosystem. A typical Brute Force Attack might attempt
to decrypt a ciphertext by using every possible key, until the correct key is found.
Such an attack is, in the case of CDXC, impractical due to the computational
infeasibility of examining its large keyspace. However, while the chances are minimal,
it is not inconceivable that such an attack might (very) rarely succeed. In order to
maintain the security of the scheme a unique key must be used for every encryption.
Doing so prevents the decryption of multiple ciphertexts in the extremely unlikely
event of the enemy obtaining the key for a particular ciphertext.

A Key Guessing attack is employed when the enemy suspects a biased distribution
of initial conditions over the keyspace. Such a situation might arise when the user of
the cryptosystem chooses keys which fit a discernible pattern, such as common

" English words or obvious combinations of the date or time. In this situation, an
enemy can make use of this knowledge to reduce the size of the keyspace to a
practically accessible size. In order to avoid such attacks, the key selectionprocess must
possess a uniform distribution over the keyspace. If this rule is followed a Key Guessing
attack becomes impractical.

While the two attacks presented above are by no means fully representative of the
arsenal of an experienced cryptanalyst, they serve to define the two main guidelines
which must be observed when employing this cryptosystem. If these rules are
followed, we may defer to the proof of the one-time pad's security as an argument
for the security of this scheme, but a final argument can not be made until the PRN
generation method has undergone extensive analysis and attack.

Further examination of the properties of the cryptosystem and its associated PRN
, generator must begin with a careful scrutiny of the character of the chaotic maps.

The quality of the PRN generator relies on whether or not these maps allow for the
uniform distribution of bits over the eight bit address from which the pseudo random

' byte is removed. In addition to an examination of the quality of the maps used in the

13



PRN, the irreproducibility of its output must be verified. It is necessary to
demonstrate, beyond simple arguments of plausibility, that reproduction of the output
of the PRN generator is computationally infeasible in a reasonable amount of time,
without the exact initial conditions used in the creation of that output. Also, periodic
behavior in the PRN generator must be addressed. While periodicity has not yet been o
observed, its existence might prove to be a complication, possibly causing unwanted
redundancies in the ciphertext. Similarly, the effect of finite precision arithmetic on
the PRN generation process must be considered. Calculations involving finite
precision are known to cause relatively small periodic loops in sequences of chaotic
iterates. An examination of this phenomenon reveals that careful selection of map
parameters may serve to minimize the effects of any precision-related periodicity.

The speed and security associated with this cryptosystem makes it ideal for use
in any situation which demands these qualities. For example, the high throughput of
our initial software implementation makes it an ideal candidate for use in the
transmission of encrypted electronic mail across networks, encrypting "on the fly". A
refined software application of this scheme, or a dedicated hardware implementation,
would operate at speeds sufficient for the dynamic encryption of high speed data
transfer, making the real time encryption of digital communications practical. The
scheme's strength makes it equally useful for the encryption of high security
documents and information. Such demands might arise due to the results of industrial
espionage, electronic theft and laundering, or violations of network security. While
this scheme is sufficient for applications requiring speed or security, its powerful
combination of the two qualities makes it suitable for applications which demand
both, offering a versatile alternative to iterated cryptosystems. "

14
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